

For Winners in Modern Commerce | avensia.com
1

Nitro: Product Description
2025-02

For Winners in Modern Commerce | avensia.com
2

Contents
1 Avensia Nitro Solution Framework ... 3

2 Nitro5 ... 4

3 Performance .. 4

3.1 PWA ... 4

3.2 Scaling out with asynchronous processes ... 5

3.3 Pre-calculating and pre-processing content ... 5

3.4 Optimizing the network with a CDN .. 5

4 Software packages.. 5

4.1 Starter Site .. 6

4.2 Epi Foundation ... 6

4.3 Payment Connectors ... 6

4.4 Checkout Framework .. 6

4.5 Scope Performance Framework ... 7

4.6 Typescript Type Generator – Ensures Quality ... 7

4.7 URL Redirector – Accelerates SEO ... 7

4.8 Search & Relevance ... 7

4.9 Relevance Search Engine Optimizer ... 8

4.10 Storefront ERP Integration Framework .. 8

4.11 PIM/MDM Connector .. 9

5 Technology stack .. 9

5.1 Single Page Application .. 10

5.2 API first .. 11

5.3 Caching ... 11

6 Content .. 11

7 Operations ... 11

7.1 Environments ... 11

7.2 Deployment .. 12

7.3 Monitoring and logging .. 12

For Winners in Modern Commerce | avensia.com
3

1 Avensia Nitro Solution Framework
Avensia Nitro gives you the following key benefits:

 Faster time to market for complex projects. Allows for early focus on customer value
rather than technology.

 Smooth customer experience built on the latest UI technology.
 Thoroughly battle tested by some of the most demanding e-commerce sites in the

Nordics, including Lyko, NA-KD, Kjell & Co, KICKS, AJ Produkter and Coop, totaling to
more than 10 000 development hours and +30 active customers using the platform.

 Lower cost of ownership through shared packages that are continuously tested and
updated.

 Connects to a rich ecosystem of third-party products for content handling, product
information management, search, payment and shipping providers, customer relations
and marketing.

 A solution for both B2C and B2B. The product ships with features for a fully functional
ecommerce site, with many capabilities for supporting commerce both to consumers
and to businesses such as customer specific assortment and trade agreement prices.
The solution can be customized utilizing existing functionality for D2C and B2G.

For Winners in Modern Commerce | avensia.com
4

2 Nitro5
Starting from Optimizely CMS 12 and Commerce 14, Optimizely have transitioned from .NET
Framework to .NET Core. This greatly improves performance and memory footprint and as a
cross-platform technology, is compatible with Windows, Linux and Mac operating systems,
allowing production hosting of Nitro on Linus servers to enable faster scaling.

As a consequence of .NET Core not being compatible with .NET Framework, Nitro has also been
updated to support the new Optimizely versions on what is called Nitro5. Nitro5 is a total
overhaul of the entire Nitro product, both starter site and Nitro packages to align with the new
Optimizely version. This has also given us the ability to go through and remove a lot of legacy
code, making the product more up to date and easier to understand and develop utilizing the
new capabilities of the .NET Core technology.

Optimizely will continue to support CMS 11 and Commerce 13 but all new feature development
will be on 12/14. Nitro will follow suite by supporting packages for Nitro for Optimizely CMS 11
and Commerce 13, but new features will primarily be on Nitro5.

3 Performance
Performance is at the heart of the whole stack, from the software packages included, to how we
work with the search index, to how data is sent to the client and how the client is architected, to
how data is loaded from data sources.

3.1 PWA
The client application is a Progressive Web App. It uses the latest
browser technologies to ensure the application is resilient against
slow and spotty networks. By using these technologies browsers
such as Google Chrome prompt the user to add the app to the
home screen, making it feel like a full-fledged mobile app.

We use different strategies to ensure that the user experience isn’t
tightly coupled to the state of the network connection. One
example is that we use optimistic updates such as adding something to the cart and seeing it in

Product info. / Digital asset
management

Search &
Relevance

More API’s
and connectors

Content deliveryLoyalty

Commerce &
CMS

✓ Optimizely CMS 12 and Commerce 14

✓ Runs on Windows, Mac and Linux

✓ Modern tech stack with .NET Core

✓ Improved performance and memory footprint

✓ Simplified code base

For Winners in Modern Commerce | avensia.com
5

the cart before the server has accepted it. Another example is rendering content and pages
from partial data and rendering placeholders until the data comes in from the server.

If the user does an action such as adding something to the cart or navigating to a new page and
that fails because of a network error, we show a graceful error message to the user.

3.2 Scaling out with asynchronous processes
We make heavy use of asynchronous processes to ensure availability and scalability. Instead of
sending a product to the search index directly when the product is changed, that change is
placed in a queue which a separate background job processes and can therefore process
multiple changes at the same time. Transactional emails work in the same fashion where it’s put
in a queue to be processed by a separate background job. These background jobs also have
the ability to gracefully handle errors and retry later.

3.3 Pre-calculating and pre-processing content
Instead of calculating and processing content on the fly as the user request it, we achieve a
higher throughput and faster response times by pre-processing and caching the content.
Instead of doing price calculations on the fly we send the list prices to the search index and use
event-based triggers to send new prices to the index as they change. For use cases where it’s
important to have real-time data we send one version to the index that is good enough to show
during the time we asynchronously load the real-time data. The important principle is to not
compromise the user experience by making the consumer wait for such operations but still
make it clear that something is loading.

3.4 Optimizing the network with a CDN
In order to achieve the best possible network transport, the solution makes heavy use of a CDN
that’s included in Optimizely DXP. Images are cached with a far future date to ensure that
images can be served directly from the CDN but still makes it possible to change an image and
have that propagate over the systems directly.

The CDN ensures that the most optimal version of an image is sent to the client. Newer browsers
support modern image formats such as WebP, and the CDN sends the image in the best
possible format.

The CDN uses HTTP2 when communicating with browsers that supports it, and through that the
solution uses HTTP2 Push to push critical assets together with the initial response.

4 Software packages
The solution comes with a set of core compiled software packages installed, and these packages
are continuously maintained, and new releases created with new features and bug fixes. All
packages are not applicable for every solution but it’s possible to install these packages later in
the project if needed.

By using packages, the code is more isolated and therefore easier to test and upgrade. Every
solution that has implemented any package can chose to upgrade at their own pace.

For Winners in Modern Commerce | avensia.com
6

4.1 Starter Site
Avensia Nitro has a pre-built starter site which makes it possible to conduct efficient discovery
workshops with a fit/gap approach showing all the out-of-the box features and then build your
project on this site.

The starter site is delivered as source code that can be customized to optimize customers
business value. New releases of the starter site give you the opportunity to copy best practices
to the implementation of your customer specific e-commerce site.

Our starter package consists of pre-built integrations APIs, starter site, and user stories with test
criteria’s. The starter site is not a demo site, it is a true project accelerator.

4.2 Epi Foundation
A foundational package that a lot of our other packages depend on. It contains a framework for
writing and running migrations that is sometimes needed to enable new features or extend the
system.

It contains a powerful content processing and dependency tracking framework. When a product
is sent to the search index the indexed entity is composed of a data from different sources. Such
as the name of the product, the prices of the variations, the names of the categories it exists. The
dependency tracking system ensures that whenever any of these entities change the indexed
product is updated in the search index. This enables us to only run incremental index builds and
only have to run full index builds on rare occasions.

It contains a framework for payments to streamline using different payment provider such as
Klarna or Paypal. The framework ensures that the customer project can just hand over the cart to
the payment framework and the payment framework knows which provider to communicate
with to run authorization, capture and credit.

4.3 Payment Connectors
Contains a set of fully featured connectors against common payment providers such as Adyen,
Avarda, Klarna, NetsEasy, Stripe, Vipps and Walley (see Functional Specification for full list).
When a new payment provider is implemented in a Nitro project, that is also packaged and
made available to our customers.

4.4 Checkout Framework
Our experience is that the checkout flow is the most complex part of an e-commerce solution
and it’s a challenge to make it robust. The possibility to combine different payment and delivery
options, gift cards, promotion codes, service fees and discounts create a plethora of scenarios
that must be covered. If we do not get this right, we risk losing not only conversion but also
customer trust.

To cope with this, we have created a shared package that abstracts checkout complexity. It
enables the development team to focus on customer experience rather than technical edge
cases.

The checkout package is agnostic in presentation so it’s possible to implement any design or
checkout flow.

Another example is getting a fast and consistent experience when the user rapidly clicks Add to
cart or quickly switches between payment or shipping methods.

For Winners in Modern Commerce | avensia.com
7

4.5 Scope Performance Framework
This package is what enables us to tie together Optimizely and ASP.NET MVC with Single Page
Application principles and React. It does so without compromising what makes Optimizely and
ASP.NET MVC great.

This package contains a lot of features that enables more efficient loading of data, such as
deferring data loading until it’s needed or grouping multiple requests to external systems (such
as the search index) to a single query.

4.6 Typescript Type Generator – Ensures Quality
This package takes a model defined in C# and generates a TypeScript definition for it. This
means that any JSON sent out from the API is expressed with a type safe contract and that
contract is automatically updated when a C# model is updated.

Having this in place gives confidence in making solution wide changes since the type checker
gives compile time errors if the client code does not follow the generated contract.

After we introduced this in our solutions, we have seen that a whole category of bugs we were
used to seeing in all projects simply disappeared.

4.7 URL Redirector – Accelerates SEO
Keeping track of redirects is crucial to not losing business from users coming to the website from
old URLs. This package monitors renaming of content and keeps track of old URLs and ensures
that we redirect the user to the new URL.

It also enables you to add custom rules that resembles regular expressions. You can set up a rule
to redirect “/en-us/*” to “/en/$0” which would redirect a request from “/en-us/about” to
“/en/about”. It also contains the same powerful matching for query parameters and makes it
possible to pass through query parameters when we redirect.

4.8 Search & Relevance
A fundamental part of any site is to serve relevant content to the visitor and that the conversion
of the usage is directly related to the performance of the site. In Nitro almost all content
(category listings, brand pages, campaign pages, blog articles, editorial content etc.) is served
by a powerful search engine.

Voyado Elevate and Optimizely Find
As part of the standard implementation, Nitro offers either Optimizely Find or Voyado Elevate
(formely known as Apptus eSales) as the internal search and relevance engine.

In Optimizely Find you get a capable search engine that is optimized to be used in conjunction
with the Optimizely platform, whereas in Voyado Elevate you get a market leading relevance
engine that not only returns the search or list result with high performance, but also sorts the
result to prioritise the most relevant result for the current visitor. Behavior by the current and
other visitors are collected and used to determine whet products are relevant at what time and
context.

For Winners in Modern Commerce | avensia.com
8

Ontologo and image analysis
With Voyado Elevate 4 the search and relevance engine bases its result on the training of the
product assortment called ontology. By understanding the products and their relations, rather
than just looking at a behavioral vector graph, the relevance for the end customer is greatly
improved.

The images of the products are analyzed in indexing to provide better relevance when it comes
to colors, patterns and textures to further strengthen filtering, searching and recommending
products.

See https://docs.apptus.com/elevate/4/ for more information.

Filter facets
Both search engines enable the user to filter the product listing on product attributes and with
the Voyado Elevate implementation, the relevance of the filters and filter options are
automatically displayed and sorted to minimize the need for manual administration while
constantly ensuring optimal conversion.

Search
All editorial content such as blog articles, how-to articles, stores etc. and the product catalogue
such as categories, product and variants are indexed by the search engine and can be retrieved
by the visitor by normal search, auto-complete and supports fuzzy search, synonyms and search
suggestions.

Recommendations
Voyado Elevate also adds recommendation panels to Avensia Nitro. This could be products lists
added to the product detail page or the cart or checkout and can be configured in Voyado
Elevate management app to show e.g. people who view item A also purchased B..E, top-sellers
for one or more categories etc. The recommendation panels also use the same automatically
optimized relevance algorithm as the search results to ensure optimal conversion.

4.9 Relevance Search Engine Optimizer
Built on top of the dependency tracking and content processing system from EpiFoundation. It
allows us to populate the Voyado Elevate or Optimizely Find search index with data from the
Optimizely catalog.

Enables the customer project to customize what data should be sent to the index and in which
format to optimize performance and the search and filter experience for end customers.

4.10 Storefront ERP Integration Framework
Avensia Storefront Integration Framework is a connector that imports product catalog
information from an ERP system into Optimizely Commerce Catalog. ERP systems supported by
Avensia Storefront Integration Framework are:

 Dynamics 365 for Finance and Operations. The integration framework connects to an
Online Retail Channel defined in Dynamics 365 for Finance and Operations and fetches
any updates made to the Catalog. The integration framework also sets the online retail
channel in status Published.

For Winners in Modern Commerce | avensia.com
9

 Dynamics 365 for Retail. The integration with Dynamics 365 for Retail is identical with
the integration with Dynamics 365 for Finance and Operations.

 Microsoft NAV 2018. The integration framework uses LS Omni service for the catalog
import. LS Omni is a part of the LS NAV Suite distributed by LS Retail and their partners.
LS NAV requires a separate license from LS Retail or their partners.

Information imported into Optimizely Commerce is by default:

 Product Master. Product masters are templates used to create variants. The product
master defines the dimensions used for variants, such as color, size and type.

 Variant. Variants are created by the ERP based on the dimensions defined in the
product masters.

 Retail product Kit. Retail Product Kits are defined in the ERP system as a collection of
products where each component may have substitutions that the visitor may select. A
product retail kit has no unique article number and have no unique inventory.

 Product Kit. A product kit is a product defined in ERP that bundles other products into a
unique article number. A product kit has its own article number and inventory.

 Navigation Hierarchy. An online retail channel requires a navigation hierarchy in the
Dynamics ERP systems. The navigation hierarchy is imported into Optimizely Commerce
Catalog and used when products are imported into the catalog. The web editor may use
the hierarchy for navigation.

 Media. Images and other media are copied into Optimizely Asset Manager for SEO and
performance.

4.11 PIM/MDM Connector
Connectors between Optimizely and inRiver PIM and Riversand MDM with an event-based
architecture which ensures that we only send the data needed to make data flow from inRiver or
Riversand to Optimizely as fast as possible.

Our experience has taught us that you don’t want a one-to-one mapping of the model in the PIM
to the model in Optimizely. You want to exclude some fields that aren’t relevant to Optimizely
and ensure that changes to those fields doesn’t trigger data to be sent. It might make sense to
express the product hierarchy as two levels in PIM but three levels in Optimizely.

This experience made us design the connectors between these systems in a way that makes it
possible to re-map the model in a layer between these systems.

5 Technology stack
The framework is built on battle tested components from companies such as Microsoft and
Facebook. The value proposition of Avensia Nitro is that we’ve taken these components and
glued them together so that they work as one coherent solution.

 Microsoft .NET 6 / C# / ASP.NET Core. The industry standard web
framework from Microsoft. These are the tools that both Optimizely and
the Avensia Nitro backend (with business logic) and all integration
components are built with.

For Winners in Modern Commerce | avensia.com
10

 React. Developed and maintained by Facebook, React is the world’s
most popular JavaScript library for building user interfaces. Not only
does React improve performance with its virtual DOM, it also allows us to
structure the frontend into components with a clear interfaces and
responsibility, making the solution more maintainable.

Redux. Redux is a development library that brings a standardized way of
managing state in a Avensia Nitro application.

 TypeScript. TypeScript is central to the way we handle data models in
Avensia Nitro: all data that is returned from the server is a typed model in
.NET, and corresponding models are generated automatically for the
frontend to use. This streamlines the work for the frontend developer by
making the data model available through intellisense in the
development environment. If a data contract is broken, a compile time
error will be issued.

V8. V8 is a JavaScript engine that is central in order to serve content to
user agents that cannot execute JavaScript. This is central for SEO but it
also improves the first load experience such that you can see content
before the client application has been bootstrapped.

Webpack. Webpack bundles JavaScript, CSS and assets in modules to
make the loading of browser resources as efficient as possible.

NuGet / npm. These are package managers (for backend and frontend
respectively) that are used to enrich the functionality by reusing existing
components/implementations. Avensia Nitro uses a mix of publicly
available packages (like Optimizely) and a handful of internal packages.

5.1 Single Page Application
The website(s) built with Avensia Nitro becomes a Single Page Application, where all internal
site navigation is done by loading only the content needed for that click. Since this is driven from
the client application it enables us to efficiently use cached data that we have loaded before.

From an operational excellence perspective, the most interesting aspect of having a website as a
Single Page Application is that it becomes much easier to scale and to further enhance the UI
interactions and UI complexity. Since the client becomes a real application, we can use industry
standard patterns and practices for managing complexity.

For Winners in Modern Commerce | avensia.com
11

5.2 API first
All data that is visible on the website – such as texts and product data – are available through an
JSON API that the client application uses. This means that any data presented on any page can
be utilized by any client and not just the website.

5.3 Caching
A typical example of how we use client
caching is going back and forth between
pages such as a product listing page and a
product detail page. When you navigate
back from a detail page to a listing page, we
already have all the data needed to render
the listing page, so that rendering can
happen without having to load anything
from the server. This makes that experience
very fast regardless of how fast your network
is or the current load on the server. The
image to the right shows an example of
going from a listing page to a detail page. We can render the detail page immediately from the
data we already have from the listing page and in parallel request the full details from the server.
The consumer isn’t hindered by this and can quickly and safely navigate back even if we haven’t
gotten the full details yet.

When we launch a new site with a customer, we typically see that page views per session
increase drastically, and this is where Avensia Nitro shines. Avensia Nitro removes a lot of pain
points for creating smooth navigation and makes it frictionless to browse the site.

6 Content
Avensia Nitro contains a variety of features to create and display content on a site, ranging from
plain article pages (with media and text) to specific landing pages and start page with a more
banner- focused layout. Optimizely CMS Blocks are components used by the web editor to
create content and design on the web pages in the site.

Blocks are used to build up the structure of a page, and blocks are shared between pages. The
Nitro layout blocks adapt the web page according to the users’ devices - mobile devices or
desktop.

7 Operations
The solution is hosted in Optimizely DXP, which is a cloud service on top of Azure. It utilizes
Azure Web Apps to ensure availability and scalability.

7.1 Environments
The solution is deployed to three different environments. Integration is the first environment and
should be seen as a pure testing environment where all changes are continuously deployed. As

For Winners in Modern Commerce | avensia.com
12

soon as a verified change gets merged to the main branch, it is built and deployed to this
environment.

The next environment is the pre-production environment which is used as a testing and
verification environment for changes before they are deployed to production.

The last environment is the production environment which is monitored by Optimizely to ensure
availability and has auto-scaling set up to scale out as more traffic comes in.

External systems such as ERP, PIM, WMS, PSP, etc need to have at least one test environment as
well as the production environment.

7.2 Deployment
Deployment is done through Optimizely DXP which uses Azure to deploy new versions of the
solution. A new deployment slot is set up on the public instances and quick verification can be
done on the deployment slot before going live. When going live Azure will swap the slots at the
same time to achieve zero-downtime deployment.

In some cases, deployment needs a service window to run migrations or other major system
changes and in those cases a maintenance page is displayed for the end users until the
deployment is done. The goal is always to have as few planned downtime deploys as possible.

It is possible to deploy at any time and the time it takes from a developer making a change to
that being live in production is around one hour.

7.3 Monitoring and logging
The solution is monitored using Azures Application Insights, Pingdom and Raygun.

Application Insights gives insights into hardware utilization and provides triggers for auto-
scaling new instances. It is possible to profile a live application through Application Insights to
fine-tune the code for better performance. Application Insights is also used to store application
logs in a searchable fashion. This is crucial for troubleshooting application issues.

Pingdom is used to monitor that the website is accessible and pings the site from different
geographical regions to ensure that all parts of the world can access it. Alerts from Pingdom are
sent both to Optimizelys Managed Services and their incident team as well as the project
development team.

Raygun is used to monitor for application errors. Such errors and all details about them are sent
to Raygun which notifies the development team.

